Week 30: Coloring is not Just for Kindergarten

I am trying to tell my 15yr old daughter that an elective high school credit in Graph Theory would be fun next year. Of course I do this as subtly as possible – I start drawing coloring sheets for this post on my iPad and then carefully shade them in. All three of my children slowly sneak up behind me and breath in my ear.

“You know that it will never take more than four colors” I state.

“Really?” I hear my oldest daughter say with a sense of wonder in her voice. “Can I make one?” she asks reaching for my device.

My 15yr old’s Piece

She takes over the iPad. I go for a run. I clean up a bit. She is still designing, thinking, coloring. A wave of gratitude flows over me “Thank God that coloring isn’t just for kindergarten.” We are so blessed to have the abundance and time to be able to color, play, and contemplate.

She finishes her design. “It looks like the beautiful cobbles on our Oregon beaches.” I think, then say.

“That’s what I was going for.” She says. Then gets up and goes back to her school work.

This week I challenge learners to play with coloring sheets. Make your own. Share them. Color them. Contemplate them. Can you restrict the coloring to four colors? It may take some problem solving for more complex sheets.

In graph theory, there is the study of graphs that are made up of nodes (vertices) that are connected with lines (edges). Create a graph for one of your coloring sheets, where the regions are nodes and lines connect the regions that touch.

You could also create a graph with nodes and edges and then the coloring sheet to go with it.

Below are a couple examples (some blank for you, my readers, to use):

Week 1: Embroider Curves with Lines

Welcome to 52 weeks of math! I will be posting a new activity every Wednesday for 52 weeks of hands-on math. Week 1 is one of my favorites – drawing with thread.

In this activity, learners will play with their rulers (or thread) to create curves with lines. The idea is to have students draw straight lines close together with various slopes to create curves. For younger ages anything goes! For middle school and up, it is a great intro into lines and the Cartesian Plane. Below is an algebra video I made for a class back in 2016. It gives you the basic idea. I also have modifications and additional ideas below.

Possible reflection questions:

  • Elementary:
    • Line segments – what are they? How many points do you need to make one?
    • What is a tangent line? What can have a tangent line?
    • Do the distances change with each line? Why?
  • Middle school (use the questions above as well):
    • What is slope-intercept form?
    • How can you change the outcome of your art if you change the axes of the graph to have angles other than 90 degrees?
    • How does the slope change? What observations can you make about the ratios?
    • How do the slopes change when a quadrant’s set of lines is reflected over an axis?
  • Algebra (use the questions above as well):
    • Is there a pattern to observe if the lines are written in standard form or point-slope form?
    • What type of curve do you think you have approximated?
    • Can you write a function for the change in slope?
  • Geometry (use the questions above as well):
    • When creating reflections over an axis, are there any patterns with sets of parallel or perpendicular lines?
    • Can you write a function for the change in distance for each line?
    • Where do you see rotational symmetry, translations or reflections in you art?
  • Trigonometry (use the questions above as well):
    • Could you create a similar work of art using polar coordinates?
    • Can you write a function for the change in angles for your art?
    • Can you write a trigonometric function for a pattern in your art? Are there any periodic behaviors?
  • Calculus (Use the questions above as well):
    • Can you create a function for the slopes? If so, what is this function in relation to the curve you created?
    • Can you determine the function for the curve you created?